From Vlasov–Poisson and Vlasov–Poisson–Fokker–Planck Systems to Incompressible Euler Equations: the case with finite charge

نویسندگان

  • Julien Barré
  • David Chiron
  • Thierry Goudon
  • Nader Masmoudi
چکیده

We study the asymptotic regime of strong electric fields that leads from the Vlasov–Poisson system to the Incompressible Euler equations. We also deal with the Vlasov–Poisson–Fokker– Planck system which induces dissipative effects. The originality consists in considering a situation with a finite total charge confined by a strong external field. In turn, the limiting equation is set in a bounded domain, the shape of which is determined by the external confining potential. The analysis extends to the situation where the limiting density is non–homogeneous and where the Euler equation is replaced by the Lake Equation, also called Anelastic Equation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Long Time Asymptotics of the Vlasov-fokker-planck Equation and of the Vlasov-poisson-fokker-planck System with Coulombic and Newtonian Potentials

We prove that the solution of the Vlasov-Fokker-Planck equation converges to the unique stationary solution with same mass as time tends to infinity. The same result holds in the repulsive coulombic case for the Vlasov-Poisson-Fokker-Planck system; the newtonian attractive case is also studied. We establish positive and negative answers to the question of existence of a stationary solution for ...

متن کامل

A difference scheme for the Vlasov-Poisson-Fokker-Planck system

A finite difference scheme is proposed for a relatively simple one dimensional collisional plasma model (Vlasov-Poisson-Fokker-Planck). The convergence of the scheme was established in [10]. In this article the scheme is implemented and compared with a random particle method. The difference scheme is found to be more effective, particularly at resolving the plasma density, / (£, x, v).

متن کامل

Smoothing Effect for the Non-linear Vlasov-poisson-fokker-planck System

We study a smoothing effect of a non-linear degenerate parabolic problem, the Vlasov-Poisson-Fokker-Planck system, in three dimensions. We prove that a solution gives rise actually to very smooth macroscopic density and force field for positive time. This is obtained by analyzing the effect of the Fokker-Planck kernel on the force term in the Vlasov equation and using classical convolution ineq...

متن کامل

Kinetic Equations with Maxwell Boundary Condition

We prove global stability results of DiPerna-Lions renormalized solutions to the initial boundary value problem for kinetic equations. The (possibly nonlinear) boundary conditions are completely or partially diffuse, which include the so-called Maxwell boundary condition, and we prove that it is realized (it is not relaxed!). The techniques are illustrated with the Fokker-Planck-Boltzmann equat...

متن کامل

Diffusion Limit of the Vlasov-poisson-fokker-planck System

Abstract. We study the diffusion limit of the Vlasov-Poisson-Fokker-Planck System. Here, we generalize the local in time results and the two dimensional results of Poupaud-Soler [F. Poupaud and J. Soler, Math. Models Methods Appl. Sci., 10(7), 1027-1045, 2000] and Goudon [T. Goudon, Math. Models Methods Appl. Sci., 15(5), 737-752, 2005] to the case of several space dimensions. Renormalization t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017